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Abstract-Heat transfer by forced convection in the thermal entrance of flat ducts and circular pipes is 
investigated for constant surface temperatures and hydrodynamically developed flows. A new technique, 
based on separation of variables and spectral decomposition of the eigenfunction in polynomial form, is 
introduced to solve the problem for viscous fluids. Application of the present method is discussed for 

Newtonian and power-law fluids. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Forced convection beat transfer in the entrance region 
of ducts has received considerable attention due to its 
practical importance, and numerous analytical as well 
as numerical studies were devoted to the Graetz prob- 
lem. Sellars et al. [l] discussed an asymptotic method 
which gives eigenvalues of high-order for fully- 
developed laminar flow of Newtonian fluids in circular 
tube or parallel-plate channel under constant wall 
temperature boundary condition. Blackwell [2] 
numerically solved ,the Sturn-Liouville system for a 
Bingham fluid, and more recently Johnston [3] exam- 
ined, anew, the same problem analytically by the use 
of separation of variables and took into account axial 
conduction. However, this method requires con- 
siderable numerical work to be completed and its rel- 
evance is questionable, since the numerical solution 
presented by Bilir [4] for the Graetz problem showed 
that axial conduction is important only very close to 
the inlet section. Ramachandran [5] used a method 
based on contour integrals in conjunction with a step 
by step, numerical procedure along the duct axis. 
Nguyen [6] presented results of a numerical study 
of simultaneously developing flow in a circular tube, 
accounting for axial diffusion of momentum and heat. 

In the present study, we consider ducts in which 
the dimensionless, developed velocity profile scaled by 
u,,,,, may be written as : 

U(Y) = f c,Yk. 
k=O 

(1) 

Obviously, for Newtonian and power-law fluids U( I’) 
is given by U(Y) = 1 -Y” where CI = 2 for a New- 
tonian fluid and a = (1 + n,)/n, for power-law fluids. 
For non-integer values of CC, U(r) could be expressed 
in the polynomial form as shown in equation (1) 
through the use of a Lagrangian interpolation pro- 
cedure or with an approximation procedure (Wei- 
erstrass approximation theorem) if the derivative of 
order (p + 1) of U(Y) is not continuous in the interval 
[O, 11. 

For the dynamically developed regime with the 
assumption of negligible axial conduction, the energy 
equation reduces to : 

= 0 and 0(0, I’) = 1. 
Y=O 

W) 

In equation (2), the dimensionless axial coordinate 
is related to the Graetz number as X = 32 Gz-‘/3 for 
parallel-plate channels (m = 0) and as X = 2 Gz-’ for 
circular pipes (m = 1). 
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NOMENCLATURE 

fluid thermal diffusivity %,X maximum velocity 
hydraulic diameter X axial coordinate 

Gz Graetz number, Gz-’ = (x/D,)/Pe Y normal coordinate, from the centerline 
L half-width of flat duct and towards the wall 
m metric parameter (m = 0 for a flat x dimensionless axial coordinate, 

duct, m = 1 for a circular pipe) X = ax/u,,,P (I = L or R) 
% power-law index Y dimensionless normal coordinate, 
NM local Nusselt number Y=y/Z(Z= LorR). 
Pe P&let number, Pe = u, Dh/a 
R radius 
T temperature Greek symbols 
T, inlet temperature CI velocity parameter, CI = 1 + l/nc 
TW wall temperature pi eigenvalue of order i 
U axial fluid velocity ll/i eigenfunction of order i 
u dimensionless axial velocity, 8 dimensionless temperature, 

ZJ = UI&n,X 0 = (T- TJ/(T,- Tw) 
a, average fluid velocity e dimensionless bulk temperature. 

2. SOLUTION PROCEDURE expansion of the above mentioned eigenfunctions (A- 

By using separation of variables, solution of equa- 
tion (2) can be written as : 

(3) 

The eigenfunctions $,(Y) are solutions of the fol- 
lowing eigenvalue system : 

J-gy ( > Y+ +jl;u(Y)$i =o (44 

i&(O) = 0 and $i(l) = 0. (4b) 

In the limit of CI + co, U = 1 (slug flow) and the 
eigenfunctions are sin(,u,Y) and cos&Y) for m = 0 
and Jo &Y), Y, &Y) for m = 1. In this straight- 
forward case, the full solution is not shown here, and 
the reader is referred to Kakac and Yener [7]. In the 
following sections, solutions which can be expressed 
in terms of these functions will be denoted as A-solu- 
tions. 

In the present study, we are looking for eig- 
enfunctions which could be expressed in series expan- 
sion as : 

Solutions based on equation (5) will be denoted B- 
solutions. 

Such a decomposition of the eigenfunctions on a 
polynomial basis of lR is quite easy to obtain. Obvi- 
ously, in the limit of tl -+ co, it is just a Taylor series 

solution). 
In order to satisfy the eigenvalue system, 

coefficients ai) must satisfy the recurrence relation : 

6-4 

($1 z 0 (6b) 

(n+m+ l)(n+2)u$~,+~T 2 ckaiyk = 0 (6~) 
k=ll 

with c, = 0 for k > p. In addition, since $i( 1) = 0, the 
coefficients of the series expansion for Gi should satisfy 
the following condition : 

“ZO ai’ = 0. (7) 

The pi are solutions of this eigenvalue equation which 
is in polynomial form. 

The numerical Newton method combined with the 
secant method was used to find the eigenvalues. Since 
the eigenvalue equation depends only on Z$ in poly- 
nomial form, the maximum number of positive real 
eigenvalues can be known for each series expansion. 
The lowest truncation order gives an order of mag- 
nitude of the first eigenvalue h. For example, the 
approximate value & = 4(m + 3) (m + I)/(m + 5) is 
found for a Newtonian fluid. Therefore, the finding 
of the pi is easier. Several orders of truncation were 
tested by trial and error so that the results were inde- 
pendent of the truncation order. The computations 
were carried out in double machine accuracy. Hence, 
for all cases discussed in the present paper, the tii(l)- 
residue (equation (7)) was less than lo-“. 



Hydrodynamically developed flows of power-law fluids 3445 

It can be shown that the eigenfunctions Gi( Y) form 
a complete orthogonal set with respect to the weight 
function Y’“U( Y) over the interval [0, 11. Therefore, 
the orthogonality relation yields 

s L 

YmU(Y)JlidY 

,& +- 

s 
Y”U(Y)$; dY 

0 

3. HEAT TRANSFER 

The local Nusselt number based on the hydraulic 
diameter is given by : 

-c ae 
N49 = e(x)a y=, 4 (9) 

withC=4form==OandC=2form= l.Thebulk 
temperature at any X-distance reads 

s 1 

Y" U( y)e(x, Y) d Y 

6(x> = o (10) 
YmU(Y)dY 

Substituting equation (5) into equations (9) and 
(10) and performing the algebra yields : 

and 

For fully-develloped regime (X -+ cc), the asymp- 
totic value of the ‘Nusselt number becomes : 

F nap t ck 
“=I k=lJ (k+m+ 1) 

Nu, = -C (13) 

and for a slug flow (U = 1 or p = 0) Nu, reduces 
to : 

f na$‘) 
C n=, 

Nu, = -- 
m+l m ($’ . (14) 

c n=o(n+m+l) 

4. RESULTS 

The asymptotic Nusselt numbers are readily 
obtained by using the A-solution for slug flow in par- 
allel-plate channel or circular pipe. These values are 
Nu, = K= = 9.8696 and 5.7831, respectively. 
Although the present method is not the best to use for 
uniform velocity profiles, we obtained the same Nu, 
to five significant digits. 

The Nusselt number for fully-developed tem- 
perature profile together with the square of the five 
first eigenvalues are reported in Table 1 for various 
values of CI, or equivalently in terms of the power-law 
index n,, both for parallel-plate channel and circular 
duct. The underlined values are in excellent agreement 
with those calculated through a pure numerical inte- 
gration of the energy equation, (i.e. Nu, = 7.541 for 
m=Oandu=2[8],Nu,=3.567form=landu=2 
[2, 6]), a semi-analytical procedure (Nu, = 3.95 for 
m = 1 and a = 3 [5]) and with the value x2/4 = 2.4674 
(slug flow, m = 0) obtained by using the classical pro- 
cedure (A-solution). 

Computation of the eigenvalues of higher order 
allows the determination of the temperature profile in 
any cross section of the duct and of the variations 
of the local Nusselt number from the inlet sections. 
Figures 1 and 2 show the variations of the bulk tem- 
perature and of the local Nusselt number as a function 
of Gz-’ in the thermal entry regions for both circular 
pipe and parallel-plate channel with constant surface 
temperature. The results are shown for Newtonian 
fluids (n, = 1), for pseudoplastic fluids (n, = 0.5 and 
0.33) and for dilatant fluids (n, = 2 and n, = co). As 
it can be seen, the bulk temperature, the thermal entry 
length and the Nusselt number increase as n, 
decreases. This is a well-known result. The asymptotic 
Nusselt numbers are shown in Fig. 2 for the ten cases 
considered in the present paper. 

Values of the bulk temperature and local Nusselt 
number are reported in Table 2 for circular pipes and 
in Table 3 for flat ducts in the Newtonian case. It can 
be seen that these values are in excellent agreement 
with the results shown by Blackwell [2] and Ram- 
achandran [5] for X 2 0.01. It should be emphasized 
that the present results were obtained by using a 
maximum of 8 eigenvalues while the series expansions 
for the eigenfunctions had less than 200 terms. For 
smaller X-values, i.e. close to the duct inlet, con- 
vergence can be achieved but a larger number of eig- 
envalues is required. At higher truncatures of the solu- 
tion expansion [equation (3)], it is not obvious to 
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Table 1. Nusselt number for fully-developed regime and square of the five first eigenvalues for Newtonian and power-law 
fluids: +, dilatant fluid ; + +, Newtonian fluid ; and + + + , slug flow 

GI nc Nu, 

co+ 
1++ 
0.5 
0.33 
0.25 
0.20 
0.166 
0+++ 

co+ 
I++ 
0.5 
0.33 
0.25 
0.20 
0.166 
0+++ 

6.9532 
7.5407 
7.9397 
8.2275 
8.4493 
8.6120 
8.7460 
9.8696 

3.2638 
3.6568 
3.9494 
4.1753 
4.3544 
4.4995 
4.6192 
5.7831 

d d 

3.47662 44.1385 
2.82776 32.1472 
2.64658 28.1320 
2.57109 26.1506 
2.53317 24.9995 
2.51183 24.2676 
2.49886 23.7742 
2.46740 22.2066 

Flat ducts 

9.79169 61.3730 
7.31358 44.6095 
6.58236 39.0934 
6.26298 36.3596 
6.09623 34.7442 
5.99940 33.6944 
5.93896 32.9705 
5.78318 30.4713 

Circular pipes 

Fig. 1. Bulk temperature in the thermal entrance region of Fig. 2. Local Nusselt number in the thermal entrance region 
a circular duct and a parallel-plate channel for power-law of a circular duct and a parallel-plate channel for power-law 

fluids. fluids. 

d 

129.258 258.795 432.746 
93.4749 186.805 312.136 
81.5671 162.900 272.125 
15.6684 151.030 252.232 
72.1724 143.958 240.359 
69.8724 139.278 232.483 
68.2533 135.961 226.887 
61.6850 120.903 199.859 

157.480 298.041 483.037 
113.921 215.241 348.564 
99.4962 187.795 303.987 
92.3260 174.141 281.798 
88.0602 165.994 268.545 
85.2458 160.598 259.149 
83.2592 156.169 253.496 
74.8870 139.040 222.932 

Table 2. Bulk temperature and local Nusselt number for different X in the case of Newtonian fluid (a = 2) in a circular pipe 
(??I= 1) 

x Ref. [2] 
B(x) 

Ref. [S] Present Ref. [2] 
JJU (x) 
Ref. [5] Present 

0.01 0.8362 0.8359 0.8362 6.002 5.961 5.990 
0.02 0.7511 0.7511 0.7511 4.916 4.915 4.916 
0.04 0.6280 0.6279 0.6280 4.172 4.177 4.172 
0.10 0.3953 0.3953 3.710 - 3.710 
0.20 0.1897 - 0.1897 3.658 - 3.658 
0.40 0.0439 0.0439 3.651 - 3.657 
1.00 0.0005 0.0005 3.657 - 3.657 
2.00 0.0000 - 0.0000 3.657 - 3.657 
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Table 3. Bulk temperature and local Nusselt number for 
different X in the case of Newtonian fluid (U = 2) in a flat 

duct (m = 0) 

X @(X) Nu (X) 

0.01 0.9307 13.036 
0.02 0.8908 10.729 
0.04 0.8280 09.036 
0.10 0.6883 07.784 
0.20 0.5172 07.554 
0.40 0.2937 07.541 
1.00 0.0538 07.541 
2.00 0.0032 07.541 

accurately determine the eigenvalues with the numeri- 
cal algorithm used However, these eigenvalues differ 
by less than 1% from the asymptotic ones reported in 
Sellers et al. [1], i.e. 

pi = 161@+20/(3& 

and pi = 4i-b 8/3 for m = 1. 

5. CONCLUSIONS 

for m = 0 

(15) 

Based on series expansion of eigenfunctions on 
monomial functions of the positive real space, the 
present method for the Graetz problem in ducts with 
constant wall temperature has the main advantage of 
being easy to use. Indeed, the knowledge of the first 
eigenfunction yields highly accurate results for fully 

developed temperature profiles while few eigenvalues 
are enough to determine temperature distributions 
and local Nusselt number in the thermal entry region. 
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